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Direct Load Control • System Operator directly controls loads to 
provide services to the grid

• Low Participation

Load Set Points Don’t touch my 
thermostat!

I’m not eating 
at midnight!

Freedom!
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Indirect Load Control • System Operator sends prices to influence 
the load amounts

• Unpredictable response

Energy Prices
This is not good 

time to charge my 
EV.

Price is not my 
concern.

Prices? Time?



Problem: Grid operators lack control over end-
user load behavior.

Approach: Dynamically optimize individualized 
incentives paired with load set points.

Human Behavior Model Incentive Optimization Numerical Evaluation
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Incentivized Load Control • Incentive amounts are based on historical 
performance with helping grid objectives.

Load Set Points

Incentives

Measurements



Problem: Grid operators lack control over end-
user load behavior.

Approach: Dynamically optimize individualized 
incentives paired with load set points.

Human Behavior Model Incentive Optimization Numerical Evaluation
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Human Response to Incentives

Load set points 𝒖𝒖∗

Incentive amounts 𝒊𝒊
𝑔𝑔𝒖𝒖∗ 𝒊𝒊 Incentivized load values

Assumptions
Monotonicity

𝑔𝑔𝒖𝒖∗ 𝒊𝒊 1 − 𝒖𝒖∗ ≤ 𝑔𝑔𝒖𝒖∗ 𝒊𝒊 2 − 𝒖𝒖∗

𝒊𝒊 1 ≽ 𝒊𝒊 2

Ability to incentivize to get set point

∃𝒊𝒊∗ s.t. 𝑔𝑔𝒖𝒖∗ 𝒊𝒊∗ = 𝒖𝒖∗



NREL    |    8

Realistic Example • Each device has an incentive threshold to 
turn off.

• Linear approximation is an estimated 
sensitivity to incentive amount.
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How well do grid operators know their customers?
More 

Information

Less 
Information

𝑔𝑔𝒖𝒖∗ 𝒊𝒊
1. Functional form: 𝑔𝑔𝒖𝒖∗ 𝒊𝒊

2. (Estimated) sensitivities: ∇𝑔𝑔𝒖𝒖∗ 𝒊𝒊

3. Grid measurements only (e.g., 
nodal voltage magnitudes)



Problem: Grid operators lack control over end-
user load behavior.

Approach: Dynamically optimize individualized 
incentives paired with load set points.

Human Behavior Model Incentive Optimization Numerical Evaluation
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Incentives for Optimal Power Flow

Optimal Power Flow
(direct control of 𝒖𝒖 )

min
𝒖𝒖

Cost 𝒖𝒖

s.t. 𝑽𝑽 ≤ Voltage 𝒖𝒖 ≤ �𝑽𝑽

𝒖𝒖 ∈ 𝓤𝓤

Indirect

Incentivized Optimal Power Flow
(influence of 𝒖𝒖 via 𝒊𝒊)

min
𝒊𝒊

Cost𝒖𝒖∗ 𝒊𝒊

s.t. 𝑽𝑽 ≤ Voltage 𝑔𝑔𝒖𝒖∗ 𝒊𝒊 ≤ �𝑽𝑽
𝒊𝒊 ∈ 𝓘𝓘

Example:
Cost𝒖𝒖∗ 𝒊𝒊 = 𝒊𝒊 1

(Could be used to determine 𝒖𝒖∗) 
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Feedback-based Control • Grid Measurements are the feedback that 
updates the dual variables.

• Incentives are updated based on locational 
relation to the dual variables.

Load Set Points 𝒖𝒖∗

Incentives 𝒊𝒊

Measurements
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Knowledge of BehaviorMore 
Information

Less 
Information

1. Functional form: 𝑔𝑔𝒖𝒖∗ 𝒊𝒊

2. (Estimated) Incentive 
Responsiveness: ∇𝑔𝑔𝒖𝒖∗ 𝒊𝒊

3. Grid measurements only (e.g., 
nodal voltage magnitudes)

We prove convergence and tracking bounds.

Control Algorithm

Dual Ascent

First-Order Primal-Dual

Zero-Order Primal-Dual
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First-Order 
Primal-Dual
Control Algorithm

• Requires:
– Estimated Incentive 

Responsiveness �̂�𝑆
– Linearized Power 

Flow 𝑅𝑅
• Cost𝒖𝒖∗ 𝒊𝒊 = 𝒊𝒊 1

Voltage Measurements �𝒗𝒗𝑡𝑡

Update Duals
𝝀𝝀𝑡𝑡+1 ≔ Projℝ+𝒩𝒩 𝝀𝝀𝑡𝑡 + 𝛽𝛽 𝑉𝑉 − �𝒗𝒗𝑡𝑡 − 𝜖𝜖𝝀𝝀𝑡𝑡
𝝀𝝀𝑡𝑡+1 ≔ Projℝ+𝒩𝒩 𝝀𝝀𝑡𝑡 + 𝛽𝛽 �𝒗𝒗𝑡𝑡 − 𝑉𝑉 − 𝜖𝜖𝝀𝝀𝑡𝑡

Duals 𝝀𝝀𝑡𝑡+1,𝝀𝝀𝑡𝑡+1

Update Incentives
𝒊𝒊𝑡𝑡+1 ≔ Projℐ 𝒊𝒊𝑡𝑡 − 𝛼𝛼 𝟏𝟏 − �̂�𝑆⊺𝑅𝑅⊺ 𝝀𝝀𝑡𝑡+1 − 𝝀𝝀𝑡𝑡+1 + 𝜖𝜖𝒊𝒊𝑡𝑡

Incentives 𝒊𝒊𝑡𝑡+1



Problem: Grid operators lack control over end-
user load behavior.

Approach: Dynamically optimize individualized 
incentives paired with load set points.

Human Behavior Model Incentive Optimization Numerical Evaluation
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Setup: Time-varying 
human behavior

Objectives:
• Keep voltage above 0.9 

p.u. with minimum total 
incentive.

• Compare First-Order and 
Zero-Order Primal Dual 
Algorithms.

• Time-varying human behavior with 6 devices per 
customer randomly coming on- and off-line.

• First-Order Algorithm has access linear 
approximations.

• Time-varying base loads from UMass Amherst Smart 
Data Set (1-minute granularity).

• IEEE 33-bus distribution system.
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Incentives are 
effective at 
providing voltage 
support.

• First-order with rough 
estimated sensitivities is 
more efficient than Zero-
order.

Min Nodal Voltage

Cost of Incentive



Problem: Grid operators lack control over end-
user load behavior.

Approach: Dynamically optimize individualized 
incentives paired with load set points.

Human Behavior Model

Realistic Flexible Model 
that integrates with 

Optimization Algorithms.

Incentive Optimization

Control algorithms that 
account for different 
behavior knowledge 

scenarios.

Numerical Evaluation

Dynamic incentives are 
effective at providing 

grid support in realistic 
scenarios.

Future direction: Expand human behavior model with state dependencies.
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Dynamically Learning Incentives 
for Load Control

Thank You!
https://arxiv.org/abs/2410.14936
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